3.2.11 Theorem Let (x_n) be a sequence of positive real numbers such that $L := \lim(x_{n+1}/x_n)$ exists. If L < 1, then (x_n) converges and $\lim(x_n) = 0$.

Proof. By 3.2.4 it follows that $L \ge 0$. Let r be a number such that L < r < 1, and let $\varepsilon := r - L > 0$. There exists a number $K \in \mathbb{N}$ such that if $n \ge K$ then

$$\left|\frac{x_{n+1}}{x_n} - L\right| < \varepsilon$$

It follows from this (why?) that if $n \ge K$, then

$$\frac{x_{n+1}}{x_n} < L + \varepsilon = L + (r - L) = r.$$

Therefore, if $n \ge K$, we obtain

$$0 < x_{n+1} < x_n r < x_{n-1} r^2 < \cdots < x_K r^{n-K+1}.$$

If we set $C := x_K/r^K$, we see that $0 < x_{n+1} < Cr^{n+1}$ for all $n \ge K$. Since 0 < r < 1, it follows from 3.1.11(b) that $\lim(r^n) = 0$ and therefore from Theorem 3.1.10 that $\lim(x_n) = 0$. Q.E.D.

As an illustration of the utility of the preceding theorem, consider the sequence (x_n) given by $x_n := n/2^n$. We have

$$\frac{x_{n+1}}{x_n} = \frac{n+1}{2^{n+1}} \cdot \frac{2^n}{n} = \frac{1}{2} \left(1 + \frac{1}{n} \right),$$

so that $\lim(x_{n+1}/x_n) = \frac{1}{2}$. Since $\frac{1}{2} < 1$, it follows from Theorem 3.2.11 that $\lim(n/2^n) = 0$.

Exercises for Section 3.2

- 1. For x_n given by the following formulas, establish either the convergence or the divergence of the sequence $X = (x_n)$.
 - (a) $x_n := \frac{n}{n+1}$, (b) $x_n := \frac{(-1)^n n}{n+1}$, (c) $x_n := \frac{n^2}{n+1}$, (d) $x_n := \frac{2n^2 + 3}{n^2 + 1}$.
- 2. Give an example of two divergent sequences X and Y such that:
 (a) their sum X + Y converges,
 (b) their product XY converges.
- 3. Show that if X and Y are sequences such that X and X + Y are convergent, then Y is convergent.
- 4. Show that if X and Y are sequences such that X converges to $x \neq 0$ and XY converges, then Y converges.
- 5. Show that the following sequences are not convergent.

(a)
$$(2^n)$$
, (b) $((-1)^n n^2)$

6. Find the limits of the following sequences:

(a)
$$\lim\left((2+1/n)^2\right)$$
, (b) $\lim\left(\frac{(-1)}{n+2}\right)$,
(c) $\lim\left(\frac{\sqrt{n}-1}{\sqrt{n}+1}\right)$, (d) $\lim\left(\frac{n+1}{n\sqrt{n}}\right)$

- 7. If (b_n) is a bounded sequence and $\lim(a_n) = 0$, show that $\lim(a_n b_n) = 0$. Explain why Theorem 3.2.3 *cannot* be used.
- 8. Explain why the result in equation (3) before Theorem 3.2.4 *cannot* be used to evaluate the limit of the sequence $((1 + 1/n)^n)$.

(b) $\lim ((n+1)^{1/\ln(n+1)}).$

- 9. Let $y_n := \sqrt{n+1} \sqrt{n}$ for $n \in \mathbb{N}$. Show that $(\sqrt{n}y_n)$ converges. Find the limit.
- 10. Determine the limits of the following sequences. (a) $(\sqrt{4n^2 + n} - 2n)$, (b) $(\sqrt{n^2 + 5n} - n)$.
- 11. Determine the following limits. (a) $\lim ((3\sqrt{n})^{1/2n}),$

12. If
$$0 < a < b$$
, determine $\lim \left(\frac{a^{n+1} + b^{n+1}}{a^n + b^n}\right)$.

- 13. If a > 0, b > 0, show that $\lim_{n \to \infty} \left(\sqrt{(n+a)(n+b)} n \right) = (a+b)/2$.
- 14. Use the Squeeze Theorem 3.2.7 to determine the limits of the following, (a) (n^{1/n^2}) , (b) $((n!)^{1/n^2})$.
- 15. Show that if $z_n := (a^n + b^n)^{1/n}$ where 0 < a < b, then $\lim(z_n) = b$.
- 16. Apply Theorem 3.2.11 to the following sequences, where a, b satisfy 0 < a < 1, b > 1. (a) (a^n) , (b) $(b^n/2^n)$,
 - (c) (n/b^n) , (d) $(2^{3n}/3^{2n})$.
- 17. (a) Give an example of a convergent sequence (x_n) of positive numbers with lim(x_{n+1}/x_n) = 1.
 (b) Give an example of a divergent sequence with this property. (Thus, this property cannot be used as a test for convergence.)
- 18. Let $X = (x_n)$ be a sequence of positive real numbers such that $\lim_{n \to \infty} (x_{n+1}/x_n) = L > 1$. Show that X is not a bounded sequence and hence is not convergent.
- 19. Discuss the convergence of the following sequences, where a, b satisfy 0 < a < 1, b > 1.
 (a) (n²aⁿ),
 (b) (bⁿ/n²),
 (c) (bⁿ/n!),
 (d) (n!/nⁿ).
- 20. Let (x_n) be a sequence of positive real numbers such that $\lim(x_n^{1/n}) = L < 1$. Show that there exists a number r with 0 < r < 1 such that $0 < x_n < r^n$ for all sufficiently large $n \in \mathbb{N}$. Use this to show that $\lim(x_n) = 0$.
- 21. (a) Give an example of a convergent sequence (x_n) of positive numbers with $\lim_{n \to \infty} (x_n^{1/n}) = 1$.
 - (b) Give an example of a divergent sequence (x_n) of positive numbers with $\lim(x_n^{1/n}) = 1$. (Thus, this property cannot be used as a test for convergence.)
- 22. Suppose that (x_n) is a convergent sequence and (y_n) is such that for any $\varepsilon > 0$ there exists *M* such that $|x_n y_n| < \varepsilon$ for all $n \ge M$. Does it follow that (y_n) is convergent?
- 23. Show that if (x_n) and (y_n) are convergent sequences, then the sequences (u_n) and (v_n) defined by $u_n := \max\{x_n, y_n\}$ and $v_n := \min\{x_n, y_n\}$ are also convergent. (See Exercise 2.2.18.)
- 24. Show that if (x_n) , (y_n) , (z_n) are convergent sequences, then the sequence (w_n) defined by $w_n := \min\{x_n, y_n, z_n\}$ is also convergent. (See Exercise 2.2.19.)

Section 3.3 Monotone Sequences

Until now, we have obtained several methods of showing that a sequence $X = (x_n)$ of real numbers is convergent: